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VH depolarized light scattering from liquids composed of symmetric top 
molecules is discussed. The dielectric fluctuations which give rise to the spec- 
trum form an orientational and collisional (or intermolecular) contribution, and 
cross-correlation between the two can occur. The problem of disentangling the 
orientational from the collisional effects is shown to be possible, at least within 
the context of a generalized hydrodynamic model, because of the coupling of 
rotations and intermolecular interactions to hydrodynamic shear modes. A 
simple generalized hydrodynamic model is proposed which is successful in 
describing the observed spctra with an appropriate number of theoretical trans- 
port coefficients treated as adjustable parameters. Though this model is quite 
successful, and though the coefficients can all be described in physically 
meaningful and mathematically precise molecular terms, it must still be taken as 
a phenomenological theory until the fitted values of the coefficients can be com- 
pared with values calculated from the molecular expressions. 

KEY WORDS: Light scattering; collision induced scattering; depolarized 
scattering; relaxation in liquids; hydrodynamic modes; molecular rotations. 

1. I N T R O D U C T I O N  

A strength of dynamic  light scattering as a tool for s tudying molecular  

mot ions  in liquids is that  nearly all t ime-dependent  processes cont r ibute  
to the spectra; however, as a consqequence,  it is sometimes difficult to 

disentangle one effect from another .  Depolarized light scattering spectra 

from liquids composed of nonspher ical  molecules arise from fluctuat ions in 
the traceless dielectric tensor ~(k, t). The elements of this tensor are depen- 
dent  both  u p o n  the collective or ien ta t ion  of the anisotropic  molecular  
polarizabili t ies D(k,  t) and upon  in termolecular  or col l is ion-induced 
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changes in polarizability ~(k,  t). Thus, it should be possible to obtain 
information about both these processes from light scattering. Because of 
cross-correlations, however, it is not simple to disentangle the con- 
tributions of each of these processes to the light scattering process. One 
objective of this article is to disentangle the orientational from the 
collision-induced processes. Curiously, it is because of the incorporation of 
still other dynamical processes that the already complicated spectrum aris- 
ing from orientational and collision-induced polarizability fluctuations can 
be partially disentangled. In particular, it is the contributions due to stan- 
dard hydrodynamic modes that give rise to additional spectral structure 
that can be useful in separating the orientational and collision-induced 
effects. Here I am also interested in studying the hydrodynamic modes 
themselves, particularly at high viscosity, where the fluid becomes 
viscoelastic and approaches the glass transition. 

This issue is dedicated to Howard Reiss. Though Howard has con- 
tributed brilliantly to many areas of science, he has not worked on the 
topic of this paper. However, even here this influence has been felt, because 
some of the fundamental studies ~1) on collision-induced light scattering 
were sponsored by Howard when he served as director of the North 
American Science Center. 

2. S I M P L I F I E D  DEPOLARIZED LS S P E C T R A  

The VH depolarized light scattering spectrum from liquids composed 
of nonspherical molecules appear quite different at low and at high 
viscosity r/3. At low t/s one observes a central "sharp"  feature which is 
reasonably Lorentzian for a few linewidths, but in addition there is a dip 
(the Rytov dip) in the center of this line/2'3) The half-width Ac% of the 
sharp line is roughly proportional to t/s 1 and is independent of k, while the 
half-width of the dip is approximately 

Ao3 d ~- k e t l j p  ( 1 ) 

here 

k = (47rn/2o) sin 0/2 (2) 

p is the mass density, 20 is the laser wavelength, n is the refractive index of 
the liquid, and 0 is the scattering angle. The sharp line is usually associated 
with molecular reoriention D and is essentially independent of k. The 
strong dependence of the dip upon k is a signature of hydrodyanamic 
modes and is an important fingerprint which can be used to help dis- 
entangle the mechanisms given rise to light scattering. The sharp line might 
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typically have a half-width of several GHz. One also observes a "broad" 
central feature with a half-width A~ob which is 5-20 times greater than that 
of the "sharp" line and is independent of k. (3) There are also other 
"background" contributions out to 100 cm -1 or more. (4) 

At high viscosity the spectrum is quite different. (3'5) The sharp central 
feature associated with reorientation is still independent of k and very 
"sharp," the proportionality of Aco, on t / ,  I having been roughly retained 
throughout the whole range of viscosities. There is no central dip, but there 
are symmetrically located, weak side peaks (shear waves) shifted from the 
center by a frequency which is proportional to k: 

&O~h = k v  (3) 

The width ACOsh of the side peaks appears to be described by 

A ~ s h  = F +  G k  2 (4) 

where F appears to be proportional to r/s 1, and G and v are more or less 
independent of t/s .(3) In all the relevant experiments the viscosity is 
increased by lowering the temperature at constant pressure, and some T 
dependence is noted in v. Most of the measurements are made with an 
interferometer, but the sharp central line can become so narrow that it 
must be studied with a correlator. (6'7~ The F term in Eq. (4) becomes 
vanishingly small at very high t/s. (3'5) At 0 = 90 ~ G k  2 is usually of the order 
of 1 GHz, the shear wave shift &O~h several GHz. Both the central line and 
the side peaks appear to be quite Lorentzian. There may be additional 
broad central features in the high-t/s spectrum, but these have not been well 
studied. (3) 

The "simplified spectra" discussed above can be described in terms of 
relatively few "adjustable parameters." One is never interested in the 
absolute integrated intensity of the spectrum. At low qs, therefore, one 
needs the half-width A~o s of the sharp central line, the half-width Ac% of the 
broad line, the ratio of the relative integrated intensity of the broad to that 
of the central line, and the depth of the Rytov dip relative to the peak 
height of the central line. Although for diatomics the relative integrated 
intensities of the broad to that of the central line is apparently quite 
small, (8'9~ for larger molecules, such as triplenyl phosphite, it may be of the 
order of one. (3) The width of the Rytov dip, as given in Eq. (1), is depen- 
dent on independently measured quantities and is therefore not an 
adjustable parameter. At low t/s one thus has the four adjustable 
parameters Acos, Ao) b, the dip depth, and the relative intensities. At high q~ 
one has the relative integrand intensity of the two side ]~eaks to that of the 
central line, the width Ae), of the sharp line, and the three parameters 
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{F, G, v} which describe the side peaks. At high r L, one thus has the five 
adjustable parameters AO)s, F, G, v, and the relative intensity; at very high 
q~, the parameter F is negligible. 

Fitting the spectra with four or five adjustable parameters is a first 
step, developing a theoretical basis for these fits is a more complicated one. 
Besides giving the observed spectral shapes, the theory, even at the 
phenomenological level, must (1) have the correct k dependence, (2) 
involve the independently measured zero-frequency viscosity ~/s, and (3) be 
consistent with observed VV and HH spectra. I shall not go into this last 
point; it has been studied to some extent, (3) but here I merely note that 
such consistency not only places requirements on a theory, it also makes it 
possible to introduce more than four or five adjustable parameters in a 
meaningfull manner. 

3. T H E  " S I M P L E "  T W O - E X P O N E N T I A L  P R O B L E M  

The VH depolarized light scattering spectrum is proportional to the 
Laplace transform of the autocorrelation function (e(k , t )e(-k ,O)) ,  
where e(k, t) is the normalized traceless dielectric tensor and ( . )  indicates 
an equilibrium ensemble average. (2) At low t/s and low resolution (so that 
the Rytov dip is not observed), the sharp and broad lines of the VH 
depolarized light scattering spectrum correspond to a (e(k, t ) e ( - k ,  0)) ,  
which is the sum of two exponentials. My first objective is to interpret this 
two-exponential correlation function. To do this I write e(k, t) as (3'1~ 

e(k, t )=  I-1 -I(k)2]l/ZD(k, t) + I(k) #(k, t) (5) 

where D is a normalized second-rank orientational tensor and 4~ is an 
appropriate normalized second-rank tensor describing the intermolecular 
contributions to e(k, t). By normalized I mean that ( l e l 2 ) =  (IDI2)  = 
([q~l 2) = 1. I call D and ~b "primary" variables. ''(12) 

It is tempting to associate the sharp spectral line with the slow 
relaxation of the orientational coordinate, i.e., with the correlation function 
(D(k,  t ) D ( - k ,  0)) ,  and the broad one with the rapid relaxation of the 
intermolecular contributions, i.e., with (~(k ,  t ) ~ ( - k ,  0)).  Actually, this 
may not be too bad an approach, but even though at t = 0  the orien- 
tational and intermolecular processes are orthogonal, i.e., 

(D(k,  t) t b ( -k ,  0))  = 0  (6) 

there may be significant time-dependent cross-correlations (D(k , t )  
~ ( - k ,  0))  between the two contributions. ~13) A glance at Eq. (5) indicates 
that such cross-correlations enter into the expression for 
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(e(k, t) e ( - k ,  0)), which in turn determines the scattering spectrum. Thus, 
even in the simple two-Lorentzian spectrum one runs into the problem of 
disentangling the relaxation of D(k, t) from that of ~b(-k, t). (l~l 

Of course, it is also possible that both Lorentizians can be associated 
with the rotational relaxation ( D ( k , t ) D ( - k ,  0)),  that the cross- 
correlations (D(k, t) q~(-k, 0))  are negligible, and that the intermolecular 
correlations (q~(k, t) ~b(-k, 0))  are so small or relax so rapidly that they 
contribute negligibly to the low-frequency light scattering spectrum. At 
least for some liquids, I do not believe this to be the case, because the ratio 
of the integrated intensity of the broad to that of the sharp line can be of 
order one, (3) and such a large "broad" contribution would imply a much 
larger deviation from simple exponential behavior then expected for 
rotational relaxation (D(k, t ) D ( - k ,  0)). It is true, however, that at very 
high viscosities such nonexponential rotational phenomena do exist, par- 
ticularly the observed (14) bifurcation of the rotational relaxation into slow c~ 
and faster fl processes, with each being well described by a Williams-Watts 
function e x p ( - t / Q  v, where 0<v~<l ;  but even at low viscosities, in 
depolarized light scattering one observes the two-Lorentzian, low- 
frequency character of the spectrum. ~ Furthermore, one knows something 
about the collision-induced light scattering spectrum from studies of 
spherical-top molecules in which rotational relaxation plays no role~lS~; 
from these studies, augmented by calculations for nonspherical molecules, 
it can be concluded that a significant collision-induced contribution at 
moderately low frequencies (several cm l) can be expected. ~4) Consequent- 
ly, I assume that both D(k, t) and #(k, t) contribute significantly to the 
" two-Lorentzian" depolarized light scattering spectrum. 

4. T W O - E X P O N E N T I A L  D Y N A M I C S  

If the orientational relaxation were described by a single exponential, 
the corresponding equation of motion would be 

d(D(k, t) D ( - k ,  0))  
dt = -MoD(k)(D(k ,  t ) D ( - k ,  0))  (7) 

where MDD(k ) is a transport coefficient (relaxation frequency). Similarly, 
for the intermolecular quantity # we have 

d(~(k ,  t) ~ ( - k ,  0))  
dt -- -M**(k)(~b(k,  t) # ( - k ,  0))  (8) 

But if there is "dynamic coupling" between D and #, these equations must 
be generalized to 

dG(t) 
- - M .  G( t )  (9)  

dt 
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where G is the matrix 

GAB(t) = (A(k, t) B ( - k ,  0))  (10) 

with {A, B} = {D, ~b}, and M is the transport matrix with elements MAC. 
If the dynamical variables A and B are normalized, i.e., ( ]A[  2 )  = 1, then 
MAB----M~A. One can also show that 

0 ~ R o ==- MDcMa, D/MoDMr162 ~ 1 (11) 

The two-Lorentizian spectrum yields only the three experimentally 
determined parameters {ACOs, Ac%, relative intensity}, while the simple 
theory I have described contains four theoretical coefficients: the dynamical 
coefficients MDD, Mr M D r  = M C D  , and the primary coupling coefficient 
I introduced in Eq. (5). The disentanglement problem is equivalent to that of 
fixing four "adjustable theoretical" parameters in terms of three experimen- 
tally determined ones. 

Many of the dynamical coefficients M, as we shall see, depend upon 
temporal integrations over time-dependent correlation functions; the I(k) 
parameter is a thermodynamic or static coefficient. I expect the ther- 
modynamic coefficients to be relatively insensitive to temperature (T), but 
the dynamical coefficients often have an Arrhenius temperature dependence. 
Because it is a ratio of dynamical coefficients, there is reason to expect the 
R0 defined in Eq. (11) to be only mildly dependent upon T or t/,. (16'17~ 

The solutions to Eq. (9) have the form 

GAB(t) = CAB exp( --21 t) + (1 - C2B) 1/2 e x p ( - 2 2 0  (12) 

We take 21 < 42. Thus, in addition to the existence in (e(k, t) .e(-k,  0))  of 
the cross-correlation function (D(k, t) qS(-k, 0)),  we find that the often- 
tational ( D ( k , t ) D ( - k ,  0))  decays not as a simple exponential 
exp(-21t) ,  but as the sum of two exponentials. (3'1~ The same is true of 
(q~(k, t) ~b(-k, 0))  and of the cross-correlations. In "favorable" situations, 
however, we expect CDD'>Cee, and all cross-correlations to be 
insignificant; in this case we could interpret the half-width A~o, = 21 of the 
sharp spectral line as the rotational relaxation frequency and the half-width 
z]co b-= 4 2 of the broad spectral line as the intermolecular relaxation fre- 
quency. This "favorable" situation should occur if there is a great 
separation of time scales, i.e., if 21 422;  actually, however, this does not 
always seem to be the case. ~3'18'1~ 

5. " S L O W "  D Y N A M I C S  

Equation (5) is an "exact" expression provided the intermolecular 
variable ~(k, t) is properly identified and provided internal motions of the 
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molecules are neglected. But the equations of motion (9) can be correct 
only at long times. Equivalently, this means that the simple two-Lorentzian 
character of the low-resolution spectrum must be compromised at high fre- 
quency, i.e., in the spectral wings. If we focus on the low-frequency spec- 
trum and long-time behavior, we are then interested only in "slow" 
variables, variables which "principally" relax slowly. Thus, if a variable 
such as the dielectric fluctuation e(t) has 

(e( t)e(O))=blexp(-21t)+b2exp(-22t)+b3exp(-23t)  (13) 

where 21 < •2 <~ /~3, it is "slow" provided Ib2l, lb21 >~ [b31. Whether or not b3 
is small, if we focus on the low-frequency spectrum, we can usually neglect 
the b3 exp( -23 t )  term and renormalize the (e(t)e(0)). Thus, even though 
(e(t) ~(0)) might correctly give rise to a three-Lorentzian spectrum, if we 
focus on the low-frequency range, we will see only two Lorentzians. The 
relevant "slow" part of e(k, t) can then be indicated by g(k, t), and the 
relevant form of Eq. (5) should be 

g = ( 1 - 7 2) ~/2/3 + 14 ( s a )  

where the tilde indicates that the "fast" parts have been projected out and 
only the slow" parts retained. The fluctuations giving rise to the low- 
frequency spectrum are then (g(t)g(O)). This procedure is equivalent to 
restricting our interest to the sharp spectral feature plus the broader 
superimposed line, but ignoring the very broad spectral background. 

It is generally thought that the variable D is a "slow" one, that only a 
very small portion relaxes within 1 psec or so. (3'1~ Thus, we can continue 
to use D rather than I). This is good, because we know how to identify D. 
The same is not true of 4; it undoubtedly has significant "fast" as well as 
"slow" components, (4~ and we are interested only in the "slow" com- 
ponents. Thus, Eq. (5a) should be rewritten as 

g ( t )  = (1 - 72) 1/2 D(t)  + 7,~(t) (5b) 

Equation (9) is then appropriate only for the "slow" parts of the inter- 
molecular variable q~, i.e., q5 should be replaced by ~; thus, below 
[-Eq. (10)] we should have {A, B } =  {D, ~}. Unfortunately, though we 
have a pretty good idea of how to identify the intermolecular variable qs, 
we do not know how to identify its "slow" part ~; this is a major part of 
the disentanglement problem. 

Note that whether or not we can identify ~ properly, if at low frequen- 
cies we observe a two-Lorentizian spectrum, Eqs. (5b) and (9) hold, and 
we are left with the four "theoretical adjustable" and three experimentally 
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determined parameters discussed above. This brings out another important 
point: In using phenomological equations of motion such as those in 
Eq. (9), with adjustable transport coefficients, we do not automatically iden- 
tify the correct slow variable ~ even if good fits are obtained. Only by 
calculating the transport coefficients MAB and the thermodynamic coupling 
7 by means of theory or molecular dynamics simulations can one check 
whether the fitted values correspond to a particular choice of ~. To do 
this, we need molecular expressions for MAB; we obtain these in the next 
section. 

Instead of choosing D and ~ as the slow primary variables, one might 
choose the "slow" dielectric tensor g directly, together with a secondary 
"slow" variable ~b. Then, of course, there are no cross-correlations in the 
expression that determines the spectrum, no 7 coupling coefficient, only 
(g(k, t) g( - k ,  0)). This is an apparent simplification, but since we do not 
know how to specify g microscopically any more than we do ~ and ~b, the 
simplification may be more apparent then real. Furthermore, by choosing 
g, which includes both rotation (D) and intermolecular (~) contributions, 
as the primary variable, we stand less chance of developing a successful 
model than by treating these two motions as independent but coupled 
processes. However, models formulated in this way can be related to those 
using D and ~ as primary orthonormal stow variables, by replacing D and 

in Eq. (9) by the two linearly independent orthonormal combinations 
{g, ~b}, where ~" is given in Eq. (5b) and 

~b = ID - (1 - I2)1/2  (~ (14) 

Equation (9) is still the equation of motion, but the slow variables are now 
{g, q~}, with g as the primary and ~b as a secondary variable. 

6. M O L E C U L A R  EXPRESSIONS 

The orientational variable D(k, t) can readily be related to molecular 
quantities: 

D(k) = ~ D2(~U) exp(ikx j) ~ ( D 2 ( ~ 0  D2(f~ ~) exp[ik(x j -  xt)] ) 
J (J/) 

(15) 
where (2J are the Eulerian angles describing the orientation of the j th  
molecule, whose center of mass has x coordinate x j, and D2 is an 
appropriate second-rank rotational tensor, i.e., a linear combination of 
Wigner rotational functions. (2) In light scattering, k is quite small, and in 
liquids far from critical points, the k dependence of the denominator in 
Eq. (15) can be neglected. 
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The intermolecular quantity ~(k, t) is more difficult to characterize. It 
certainly contains first-order dipole-induced-dipole (DID) contributions, 
but may also contain contributions associated with higher DID 
contributions, (19~ distortion of the polarizability tensor, and electronic 
overlap between molecules. (2~ We assume here that ~b is first-order DID. It 
then tbllows that 

qS(k) = ~ u(r ~jt) D2(fU) D2(s t) exp(ik �9 r j) 
jt 

x ~ u(r j') D2(D j ) D2(Q t ) exp(ik" r j) (16) 
fl 

where u(r j~) is the dipole-dipole interaction tensor and r jt is the dis- 
placement between the j t h  and lth molecules. Thus, if limited to first-order 
DID, �9 is easy enough to identify in molecular terms, but the low- 
frequency LS spectrum depends only on the slow components (~) of ~. 
And we do not know how to identify ~. Various models can be constructed 
for ~; I will discuss some of these below. But, as discussed above, on the 
basis only of experimental fits of the adjustable parameters, we can 
eliminate some models, but we cannot readily distinguish among others. 

If we choose a model, a procedure equivalent to selecting ~, we can 
then in principle calculate the transport coefficients MAB. In particular, 
making use of the Mori formalism, (2~) we find that 

MAa= dt ( l - exp ( iQLt )QA] [QB] * )  - ( A B )  (17) 

where L is the Liouville operator and Q is the Mori-Zwanzig projection 
operator, which when acting on a function H yields 

Q H = H -  ( H A * ) A  - ( H B * ) B  (18) 

So, indeed if we know A and B, i.e., if we know D and ~, we can calculate 
the three transport coefficients m n 9  , i.e., {MDD, Mee ,  MDe}, as well as 
the thermodynamic coupling ~ By calculating these four "theoretial" coef- 
ficients with different choices of ~, and then using these to calculate the 
three "adjustable" parameters needed to fit the spectra, we should be able 
to distinguish among models by comparing these calculated "adjustable" 
parameters with those obtained experimentally. This is, however, difficult 
to do, (22) and one is usually confronted with four "adjustable theoretical" 
parameters to fit the three-parameter  spectrum; this does not yield 
definitive results. 
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One model, not a particularly successful one ,  (1~ takes ~ to be the 
"normalized" stress tensor a: 

~ ---} a (19) 

The stress tensor is an intermolecular quantity which can be molecularly 
well specified, and is often introduced into theories of viscoelasticity as a 
"slow" variable/24) If indeed it is a "slow" variable, it may well describe the 
slow parts of the DID interaction. At low k, the normalized stress tensor is 
defined by the relation ~25) 

d 
a(k) = ~ exp(ikx s) -~ (p~xJ)/pk~ TV~) 1/2 (20a) 

J 

where x j is the x component of the position of the center of mass of the j th  
particle and p{ is its z component of momentum, k is taken along the x 
axis, kB is the Boltzmann constant, V is the sample volume, and # is the 
shear modulus. The scattering plane is the xy planeJ 2) See Appendix B for 
a molecular expression for #. Equivalently, we can write 

a ( k ) =  ~ [2 s p~+ (1/2)~t (xJ-xl)/~j~t] exp(ikx j) (20b) 

where p{~ is the force on the j t h  particle due to t h e / t h  one. 

7. H Y D R O D Y N A M I C  INTERACTIONS 

In the preceding discussion of theory, I ignored the k dependence 
observed in the high-resolution, good-quality spectra/"3) I address this 
problem here. 

Conserved variables decay very slowly in the low-k limit, the decay 
rate vanishing as k 2. Since light scattering is carried out at reasonably small 
k, we must consider the possibility that conserved variables, even though 
they do not enter equations (5), (5a), (5b), can affect the relevant 
dynamics. In particular, it is found that the transform of the "normalized" 
transverse momentum density, 

p(k) = ~ PJz exp( ikxJ)/(P k" TV) m (21) 
J 

can affect the VH depolarized light scattering spectrum. 
At very low k, where p(k, t) is much slower than all other variables, 

e.g., than D and ~, its correlation function (p(k,  t) p ( - k ,  0))  decays as 
exp[-k2(tls/p)t]. But at somewhat higher k, one must incorporate all 
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"slow" modes; in our case, D(k, t) and ~(k, t) as well as p(k, t). The 
equations of motion are once again given by Eq. (9), but with {A, B} = 
{D, 03, p}; however, Eq. (5b) still does not contain p. Thus, p is called a 
"secondary" variable, one which does not enter into the expression for g 
but does affect its dynamics. ~12~ 

The fact that the observed spectra have features with very strong k 
dependences indicates that the coupling of g, i.e., of either D or ~ or both 
to p, is significant. There are numerous consequences resulting from the 
introduction of p(k, t) into the problem: 

1. The transport matrix M in Eq. (9) is now a three by three matrix 
with six independent elements. 

2. Though the k dependence was negligible in the {D, ~} problem, 
the conserved quantity p introduces a distinctive k signature, i.e., 

mpp .~. k2mep 

M p r  = ikmpr  (22) 

Mpz~ = ikmpD 

with relatively little k dependence in 

7~ M DO , M r162  M Dr , mpp, mpr  mpz~ 

that 
. 

(23) 

The viscosity 11 s is introduced quite naturally by the requirement 

lira (p(k, t) p ( - k ,  0))  ~ exp[ -kZ(qs/p) t]  (24) 
k ~ 0  

This requirement reduces the number of independent M AB from six to five. It 
is interesting to note that in the low-k limit 

p(k, t )=  ik#l/2a(k, t) (25) 

It is sometimes useful to break a into its normalized symmetric (a s) 
and antisymmetric (a a) parts~1~ 

a = as(#s//~) 1/z + ~ra(l~/l~) l/z (26) 

See Appendix B for molecular expressions for all these quantities. It can be 
shown that ~25~ 

(D(k, 0) a ( - k ,  0))  = 0  (27) 

and also that ~3,1~ 

(D(k, 0) aS(-k,  0))  = (D(k, 0) cr"(-k, 0))  = 0  (28) 

(aS(k, 0) a " ( - k ,  0))  = 0 (29) 
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8. OUR MODEL 

Our first goal is to seek a molecular expression for the slow inter- 
molecular variable ~ which yields transport equations which can be used 
to describe the observed VH spectra. We would, of course, like to find the 
"correct" form of ~ so that 7 and the five independent MA8 could be 
calculated, but since we usually introduce these as adjustable parameters, 
we cannot check whether we have the "correct" model or form of ~. Under 
these conditions we seek a form for ~ which reduces the number of 
adjustable parameters while still giving fits to the spectra and still satisfying 
the various imposed physical conditions such as (24) and the fact that 
I 5 0 .  Our choice is ~ --, as, where a s is the symmetric stress tensor specified 
in gq. (26). 

As a consequence of Eqs. (17), (25) (29) it follows that 

MpD=0 (30) 

The low-k requirement on viscosity given in (24) leads to 

q jp  = [#s/(1 - R) Mr162 + mpp (31) 

where 

[mCp[ 2 =- JAS/p (32)  

and the dimensionless parameter R, defined by Eq. (11 ), is 

Ro = I MD~ I2/MDD Mr (3 3) 

With this model, we can fit both the high- and low-viscosity spectra 
with the five coefficients {L #~, mpp, M~r MDD}. The coefficient MD~ is 
determined by the condition in Eq. (31) and the definition of Ro. At low t/S 
this model yields 

and at high r/, 

Acos ,~ MDD(1 - -  R o )  (34a) 

Ace b ,~, M e,p (34b) 

mpp ~, 0 (34c) 

2Amsh ~ M,~e + k2mpp 

6e)s h ~ k(Fs/p) 1/2 

fraction of depolarized intensity in shear wave ~ 72 

Aco~ ~ Mop 

(35a) 

(35b) 

(35e) 

(35d) 
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It the five theoretical coefficients are treated as adjustable parameters, 
we find that at low viscosity, because mpp is insignificant, we have four 
"adjustable theoretical" and four experimental parameters, while at high 
viscosity we have five "theoretical adjustable" and five experimental 
parameters. This in itself is not a very remarkable achievement. However, 
we are able to obtain: 

1. All the correct k dependence as described in Eqs. (1), (3), and (4). 

2. The correct viscosity dependence as described in Eq. (1). 

3. Simultaneous fulfillment of the requirements in Eqs. (31) and (11). 

4. As expected, strong temperature (viscosity) dependences of the 
dynamical quantities: rotational frequency MDD varying roughly 
as qjT, and the intermolecular relaxation frequency Mee  as r/~/2, 

M e e  ~> MDD (36) 

See ref. 10 and Appendix C. 

5. As expected, relatively weak temperature (viscosity) dependences 
of the thermodynamic quantities 7 .2 and /~s or 6COsk6o/k. See 
Appendix C. 

6. As predicted, proportionality of the coefficient F defined in Eqs, 
(4) and (35a) to Mee ,  i.e., to q2 -~/2. See Appendix C. 

7. Monotonic, continuous temperature and t/s dependences for all 
parameters. See refs. 3 and 10. 

But there are features of this model which, though not demonstrably 
wrong, are nonetheless disturbing. 

1. The coefficient mpp, which corresponds to the coefficient G in Eqs. 
(4) and (35a), is a dynamic coefficient (1~ which might be expected to have 
a strong T (or t/5,) dependence, but is found to be quite constant for high-t/s 
spectra. On the other hand, at low viscosity, in order to satisfy Eq. (31), 
one finds mpp,~O. See Appendix C. This behavior of mpp remains 
unexplained. 

2. For k = 0, e.g., for the scattering angle 0 ~ 0, even at high viscosity 
there are no side peaks, and the half-width of the sharp central line is given 
by Eq. (35d) rather than Eq. (34a). Thus, if Ro~0.7,  as it seems to be at 
high viscosity, ~3~ then A~Os at very small angles (k = 0) should be narrower 
than at large angles. However, measurements at very high t/, seem to 
indicate that Aco~ is independent of scattering angle 0. (0"7) Though it is 
possible that the measurements were all made at sufficiently high k for 
Eq. (35d) to hold, the situation is a bit more complicated when one realizes 

822/52/5-6-11 
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that the VH spectrum is actually the superposition of two spectra, Jxz(co) 
and Jyz(co), which are, respectively, the transforms of (gxz(k, t)gxz(-k, 0)) 
and (gyz(k, t) gyz(-k, 0));  k is taken along the x axis, with the scattering 
plane being the xy plane. (2) It can readily be shown that the VH spectrum 
Jvn(co) is~2) 

JvH(k, co)= Jxz(k, co) cos 2 0/2 + Jyz(k, co) sin 2 0/2 (37) 

and though gxz couples dynamically to the conserved variable p, gyz does 
not. ~2) Thus, Jvn(0, co) ~ Jyz(k, co). With our model, at 0 ~ = 0 ~ we expect a 
single (xz) sharp central line governed by Eq. (34a); at 0 < 0 < 9 0  ~ we 
expect a strong (xz) line governed by Eq. (35d), and a weaker (yz) line 
governed by Eq. (34a); at 0 = 90 ~ the (xz) has equal integrated intensity 
with the (yz) line; at 0 > 90 ~ there is a weak (xz) and a strong (yz) line. It 
is not yet known for sure whether careful measurements of the central spec- 
tral features, over and above the sharpest one, will yield results compatible 
with the pedictions of the model. 

3. At high T (low t/s ), the fits yield values of Ro which are quite 
small, i.e., Ro < 0.1. This means that the coupling of reorientation D to the 
momentum gradients are very weak, and consequently their orientation 
due to flow is small, much smaller than expected. (26) However, in a flow 
birefringence experiment, as in a light scattering experiment, we measure g 
and not D, and since g may have a large intermolecular component 
which couples strongly to momentum gradients, it may be the coupling of 
p to �9 rather than to D that contributes principally to flow birefringence 
(and to the Rytov dip as well). This can be checked only by MD 
simulations from which one can measure the effect of flows on D itself, 
rather than on g. The existing MD results are encouraging but 
inconclusive. (22) 

9. G E N E R A L  D I S C U S S I O N :  T H R E E - V A R I A B L E  M O D E L S  

The analysis given above is based on the use of the three slow 
variables {D, p, ~}; the first two are well-specified molecular quantities, 
the third is not but is chosen to be ~s. The thermodynamic coupling 
parameter 7 is introduced via Eq. (5b), and six dynamic parameters Mop, 
M D ~  , M ~ ,  ikmDp, ikm~p, and k2mpp are introduced into the equations of 
motion (9). The explicit k dependence of these dynamic coefficients is the 
only k dependence considered. Equation (24) not only serves to introduce 
the viscosity t/S into the problem, but it places a restriction on the dynamic 
coupling parameters, so that only five of them are linearly independent. 
Nevertheless, this leaves us with six "adjustable theoretical" coefficients and 
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only four or five parameters to be fixed by the spectra. So choices of 
have been sought which cause some of the coefficients to vanish. 

Alternatively, we could use the three slow variables {g, p, ~b}. Here 
neither g nor q~ is a well-specified molecular quantity, but there is no 
parameter 7 to worry about. Thus, there are only five "adjustable 
theoretical" coefficients. But this is still too many. Furthermore, when 
trying to interpret the results in molecular terms, one is forced to break g 
into orientational (D) and intermolecular (qs) terms, so that one returns to 
the {D, p, ~} representation with the consequent inclusion of the coef- 
ficient 7. 

A discussion of various models is given in Appendix A. 

10. S U M M A R Y  

][ summarize by stating that the simplest model for describing the prin- 
cipal features of the VH depolarized light scattering spectrum makes use of 
three slow variables: D, p, ~. With the various imposed constraints, for an 
arbitrary ~ we have six linearly independent theoretical coefficients, too 
many if they are to be obtained from spectral fits. Certain models, i.e., cer- 
tain choices of ~, reduce the number of such coefficients. If ~ is taken to be 
the symmetric stress tensor ~r ~, one of the theoretical coefficients vanishes, 
and all principal features of the spectra can still be described, with the 
number of theoretical parameters equal to the number of experimentally 
determined ones. 

Within the constraints of this model, the parameter 7 in Eq. (5b) can 
be determined, which enables us to disentangle the intermolecular f rom the 
orientational relaxations. This is what we set out to do. But remember that 
this disentanglement is based upon a specific model, one in which MpD = O. 
In Appendix C it is shown that for triphenyl phosphate, 72 is about 0.5 at 
low viscosity and decreases to about 0.1 at high viscosity; a decrease in 
collision-induced scattering is to be expected with increasing density. (27) 

The model used is a phenomenological one in that even though the 
form of the equations and the vanishing of some parameters is due to the 
specifics of the model, i.e., the choice of ~, the theoretical coefficients have 
been evaluated by fits of spectral data. One must keep in mind that even 
though the model gives good fits with these empirically adjusted 
parameters, theoretical parameters calculated with ~ = a',  if available, 
might not agree with these fitted values. Since we have molecular 
expressions for the theoretical coefficients, we could, in principle, try to 
calculate them, thereby checking the model or theory. (22~ A model with the 
"correct" slow ~ may not have the simplifying property that MpD = 0, so 
that there may intrinsically be five linearly independent MAe plus 7 as 
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theoretically adjustable parameters; such a "correct" theory could be useful 
i f  indeed the parameters were calculated by MD simulations, but not if  they 
are treated as adjustable. 

Appendix A discusses and compares the present approach with those 
of a number of others, (3'1~ 36) none of which, I believe, fulfills all the 
imposed requirements spectral fits and molecular interpretation--as 
simply or as well as this one does. 

Some experimental results for the ~ = a s model are given in Appen- 
dix C. In detail the spectral are more complicated than indicated here. (3) 

APPENDIX A. OTHER MODELS 

A detailed discussion of the models listed below is given in ref. 10. 
All the "three-variable models" introduce the transverse momentum p 

as a variable, and it is this variable which introduces the significant k 
dependences indicated in Eq. (22) as well as the low-k viscosity condition 
in (24). All the models found in the literature fit one of the following 
categories: (a) {D, p, ~}  with 7=0 ,  (b) {D, p, ~} with 7 r  (c) {g, p, ~b}. 

All theories with 
Mpp = 0 (A1) 

and with M e e  independent of k lead to 

G = 0  (A2) 

in Eq. (4); this is contrary to observation. Theories in this category include 
those of Volterra (23) (type a) and of Chappell et al. (1~ (type b), both of 
which set ~ = a and, as a consequence, have both MpD = 0 and Mpp = O. 
Also in this category is the theory of Romanov and Solovev (2s~ (type c), in 
which M ~  =0 ,  and ~ =  ( a g ) g +  (aO)O, the latter leading t o  Mpp=O. The 
only way in which to guarantee that M ~  = 0 is to set g = a s and ~b = aa. 

MacPhail and Kivelson (29) have suggested that even with Mpp=O, 
finite G's could be obtained, provided 

M e e  = f + gk 2 (A3) 

where f>> gk 2 at low r/s, but with f--* 0 as t/5--, oo. The conditions in Eqs. 
(A1) and (A3) are satisfied by the model of Ailawadi (3~ (type a), in 
v~hich ~ is the spin or intrinsic molecular angular momentum; but because 
of the spin's odd time-reversal symmetry, the theory does not give good 
spectral fits. Eq. (A-3) could also be the result of a k-expansion of m ~ .  (29) 

The theory of Anderson and Pecora (32) (type a) sets ~ = a s ;  con- 
sequently, MDp = 0 and Mpp = kZmpp r O. This model differs from ours in 

that it sets 7=  0, and finite 7 is needed to obtain good spectral fits. 
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The theory of Quentrec I33 35) (type a or perhaps type c) sets either 
or ~b equal to a mass quadrupole variable. Here, none of the transport coef- 
ficients MAB necessarily vanishes. Mathematically, this model is equivalent 
to the one given here with the same number of adjustable theoretical coef- 
ficients. However, if taken as a model of type a, then it has 7= 0, which I 
believe to be unphysical, and if taken as a model of type c, then g is not 
well specified in molecular terms. (Furthermore, though a mass quadrupole 
variable is introduced, & or ~b could be any symmetric second-rank tensor 
with even time-reversal symmetry; however, the mass quadrupole is indeed 
a sensible choice for an intermolecular "slow" variable). 

The theory of Wang (36) (type c) sets ~ = q / ( q 2 ) l / 2 ,  where 
q=p(kBTpV) 1/2. It assumes that (rq] 2) l=Z2k2. As a consequence, 
M~r = M ~  =0.  In this model there are only four adjustable theoretical 
parameters, less than in any other model, but it has some serious dif- 
ficulties: 

1. The low-k viscosity condition (24) cannot be satisfied. The 
momentum decays dissipatively at high k and exhibits shear waves 
at low k, contrary to observation. 

2. The parameter F in Eq. (4) vanishes, contrary to observation, 
which suggests that the small number of adjustable parameters is 
in fact too small. 

3. Contrary to assumption, though bounded in the solid state, 
(]q]2) appears to be unbounded in the liquid state. Because of the 
minimal structural differences observed between liquids and 
glasses, the existence of a thermodynamic correlation length or 
order parameter which could account for the change in "bounded- 
ness" in going continuously from liquid to glass is unexpected. 

The more complex four-variable theory introduced by Chappell and 
Kivelson (3~ fits the data, well but introduces additional adjustable 
theoretical parameters. However, since they obtained simultaneous fits of 
the VH, HH, and VV spectra, they found enough experimental features to 
evaluate the parameters. 

APPENDIX B. MOLECULAR EXPRESSIONS FOR 
T H E R M O D Y N A M I C  COEFFICIENTS 

The shear modulus # is 

N 1 ([Y~j,0 ( x j -  P~ ] ) 
~=kBT ~ -~ 4 kBTV (B1) 
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The symmetric shear modulus is 

l .jl]2 t ~ kuTN 1 ([Z~j ,o(xJ-x;)b~;+(zJ-z)px ) 
- - -  ~- " (B2) 

V 16 kB TV 

and the antisymmetric shear modulus is 

#a kBTN 1 ([Z(j,;)(xJ-x;)D~;+(zJ-z;)l)s 2) 
= + - -  (B3) 

V 16 kB TV 

The thermodynamic coupling parameter 7, which enters the ~ = o s model, 
is 

where 

72= [ 1 + W 2] 1 W 2 

W =  - [ (kBTV)]As]  -1/2 ( Y~So) 
A~ ( A 2 )  1/2 

o~ is the symmetric stress tensor 

a~o=-~ e ;ex' (pJzxS + p{z s) 

and 

A = ~ D2(f2 j) exp(ik, x j) 
J 

Y= ~ u(r j;) D2(O j) D2(f2;) exp(ikx j) 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

See Eqs. (15) and (16). 

APPENDIX  C. DATA ANALYSIS  

The data in Table I are for triphenyl phosphite and are taken from the 
work of Chappell and Kivelson. (3) These data refer to the Jxz(OO) com- 
ponent of the VH spectrum. [See Eq. (37).] 

1. k6o is the k at a scattering angle of 60 ~ 

k6o = 1.930 x 107 m - i  

2. &o s is the shift of the shear wave line (which is observed only at 
high t/s). The values are obtained by fits to the spectra generated by the 
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Table I. VH Scattering for Triphenyl Phosphite 

(oc) 

Scattering Integrated 
r~s angle 6o G Am, F Gk~o shear 

(cP) (deg) (GHz) (GHz) &o,k60/k (GHz) (GHz) F~I~/2 ~1/2M /9 't, ~ / ,  waves 72 

-27.7 652 90 3.2 0.35 2.3 0.20 0.15 [5] - -  

-22.7 60 2.1 0.37 2.1 
406 90 3.0 0.49 2.1 0.26 0.12 5.2 2.4 

120 3.7 0.60 2.1 

-17.8 60 2.0 0.42 2.0 
264 90 2.8 0.54 2.0 0.30 0.12 4.9 2.3 

120 3.4 0.66 2.0 

-12.7 60 1.8 0.50 1.8 
173 90 2.6 0.62 1.8 0.38 0.12 5.0 2.6 

120 3.2 0.74 1.8 

-7.7 60 1.7 0.56 1.7 
118 90 2.4 0.68 1.7 0.44 0.12 4.8 2.5 

120 3.0 0.80 1.7 

2.7 60 1.6 0.68 1.6 
83.1 90 2.3 0.79 1.6 0.58 0.10 5.3 2.9 

120 2.8 0.89 1.6 

17.4 25.7 90 1.5 1.2 1.0 0.96 0.12 4.9 3.1 

87.5 2.9 90 . . . . . .  6.0 

0.12 

0,14 

0.17 

0.18 

0.20 

0.23 

0.11 

0.14 

0.17 

0.22 

0.28 

0.34 

0.50 

0.50 

four-variable theory of Chappell and Kivelson with the parameters given 
therein. The acoustic speed v, defined in Eq. (3), is proportional to the 
&Gk6o/k given in the table, and at high r/s is more or less proportional to 
(l?/p) in, as indicated in Eq. (35b): thus, at high qs 

v ~ G o  &Os/k ~ (/~S/p)1/2 

and, as indicated in Eq. (22), mpo = ( f l S / p ) l / 2 .  See the k6o6O),/k column in 
the table; as expected, it changes only by a factor of 2, while r/s changes by 
a factor of 225. 

3. 3o9~ is the half-width at half-height of the shear wave line, 
obtained as indicated above. The parameters F and Gk2o are defined in 
Eq. (4) and are given in the table. In the high-r/s region where the shear- 
wave side peaks are observed, we find that Gk2o is quite constant, and F 
varies roughly as -s nl/z (see F, Gk~o , and Fq~ -1/2 columns). 

4. The integrated intensity of the two shear waves as a fraction of the 
total depolarized integrated intensity was obtained from the four-variable 
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fit of Chappell and Kivelson (3) and is given in the next to last column. The 
related 72 parameter,  specified by Eq. (5a), was obtained from a three- 
variable (with MDp = 0) fit to the 90 ~ angle data given by Chappell et al. (1~ 
See Eq. (35c). These parameters seem to vary somewhat at high r/S, but 
very little at low r/,; it seems rather fortuitous that 72= 0.5 at low ~/s. 

5. The sharp central linewidth Aco s as given in both refs. 3 and 10 is 
associated with the parameter  MDD and represents a rotational relaxation 
frequency. The data can be found in ref. 3 and 10; the most relevant point 
is that A~o, and MDD vary strongly with t/s and T, more or less as T/tl n. 

6. The broad central linewidth Ac% in the Jyz(O~) spectrum at high t/, 
and in both the Jyz(co) and Jxz(co) spectra at low t/S is closely related to the 
M e e  parameter  [see Eq. (34b)]. At high t/s, 

F = M e e / 2  

as indicated in Eq. (35a). The Me~rl~/2/2 column indicates that M e e  does 
indeed vary more or less as t / ,  1/2, but the relationship between F and M e e  
seems to be off by a factor of 2. (The M e e  are taken from the four-variable 
fits of ref. 3.) 

7. The data at - 27 .7~  were obtained at 90 ~ only. Ftl~/2 was set at 5, 
and since t/S is known, F could be obtained. With F and A~Os(90 ~ known, 
one can obtain Gk2o . 

8. The resolution of side peaks at 17.4~ is poor, but &n S, Am,, F, 
and Gk~o were obtained by fits with the four-variable theory. (3) Above 
17.4~ one observes no side peaks, and a three-variable (MDp=O) fit 
yields 72~  0.5. One such point (87.5~ is given in the table. 
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